Function reference
-
peak_alpha()
- Alpha parameter with a single peak
-
expected_entropy()
- Expected entropy for samples from a Dirichlet distribution
-
rdirichlet()
- Sample from the Dirichlet distribution
-
draw_a_word()
- Draw a single word given topic and word distributions
-
draw_words()
- Draw words for one document
-
draw_corpus()
- Draw a collection of documents
-
journal_specific()
- "Journal-specific" simulation scenario
-
ndH()
- Information gain (uniform distribution)
-
ndR()
- Information gain (length-proportional distribution)
-
tmfast()
- Fit a topic model using PCA+varimax
-
insert_topics()
- Insert a topic model into a fitted
tmfast
-
varimax_irlba()
- Fit a varimax-rotated PCA using irlba
-
fit_varimax()
- Given a (rank
n
) PCA fit, return a rankk < n
varimax fit
-
tidy(<tmfast>)
- Extract beta and gamma matrices from
tmfast
objects
-
tidy_all()
- Extract gamma or beta matrices for all topics
-
solve_power()
- Solve the equation to find the desired exponent
-
target_power()
- Find target power for renormalization
-
renorm()
- Renormalize tidied distributions
-
hellinger(<Matrix>)
- Hellinger distance for matrices
-
hellinger()
- Hellinger distances
-
hellinger(<data.frame>)
- Hellinger distance for dataframes
-
tsne()
- Discursive space using t-SNE
-
tsne(<data.frame>)
- Discursive space using t-SNE
-
umap()
- Discursive space using UMAP
-
umap(<STM>)
- Discursive space with UMAP for structural topic models
-
umap(<matrix>)
- Discursive space with UMAP given a distance matrix
-
umap(<tmfast>)
- Discursive space with UMAP for tmfast topic models
-
build_matrix()
- Convert a long dataframe to a wide (sparse) matrix
-
entropy()
- Entropy of a distribution
-
loadings()
- Extract a PCA/varimax loadings matrix
-
scores()
- Extract item scores from a fitted PCA/varimax model
-
rotation()
- Extract varimax rotation
-
make_colnames()
- Make colnames