Function reference
-
peak_alpha() - Alpha parameter with a single peak
-
expected_entropy() - Expected entropy for samples from a Dirichlet distribution
-
rdirichlet() - Sample from the Dirichlet distribution
-
draw_a_word() - Draw a single word given topic and word distributions
-
draw_words() - Draw words for one document
-
draw_corpus() - Draw a collection of documents
-
journal_specific() - "Journal-specific" simulation scenario
-
ndH() - Information gain (uniform distribution)
-
ndR() - Information gain (length-proportional distribution)
-
tmfast() - Fit a topic model using PCA+varimax
-
insert_topics() - Insert a topic model into a fitted
tmfast
-
varimax_irlba() - Fit a varimax-rotated PCA using irlba
-
fit_varimax() - Given a (rank
n) PCA fit, return a rankk < nvarimax fit
-
tidy(<tmfast>) - Extract beta and gamma matrices from
tmfastobjects
-
tidy_all() - Extract gamma or beta matrices for all topics
-
solve_power() - Solve the equation to find the desired exponent
-
target_power() - Find target power for renormalization
-
renorm() - Renormalize tidied distributions
-
hellinger(<Matrix>) - Hellinger distance for matrices
-
hellinger() - Hellinger distances
-
hellinger(<data.frame>) - Hellinger distance for dataframes
-
tsne() - Discursive space using t-SNE
-
tsne(<data.frame>) - Discursive space using t-SNE
-
umap() - Discursive space using UMAP
-
umap(<STM>) - Discursive space with UMAP for structural topic models
-
umap(<matrix>) - Discursive space with UMAP given a distance matrix
-
umap(<tmfast>) - Discursive space with UMAP for tmfast topic models
-
build_matrix() - Convert a long dataframe to a wide (sparse) matrix
-
entropy() - Entropy of a distribution
-
loadings() - Extract a PCA/varimax loadings matrix
-
scores() - Extract item scores from a fitted PCA/varimax model
-
rotation() - Extract varimax rotation
-
make_colnames() - Make colnames